

EFFECT OF AEROBIC TRAINING, RESISTANCE TRAINING AND CONCURRENT TRAINING ON SELECTED BIOMOTOR ABILITIES

Dr.P.Kumaravelu

Assistant Professor, Department of Physical Education, Tamilnadu Physical Education and Sports University, Chennai

Dr.C.Uma Devi

Director of Physical Education, Ethiraj College of Women,Chennai

Dr. T. Arun Prasanna

PDF Scholar, Alagappa University College of Physical Education, TamilNadu.

ABSTRACT

The reason of the think about was to discover out the impact of high-impact, resistance and concurrent training on chosen bio motor capacities. For this think about, sixty men understudies were chosen haphazardly as subjects and isolated into four teams as high-impact, resistance and concurrent training. Test to be specific explosive strength and strength endurance were tried at the starting and conclusion of 12th week exploratory treatment. The collected information was factually analysed by utilizing investigation of covariance (ANCOVA). It was found that there was a significant improvement

In test groups in explosive strength and strength endurance.

Keywords: Aerobic training, resistance training, concurrent training, strength endurance and explosive strength.

Introduction

Effective competitors comprehend athletic program and the genuine explanation for their endeavours. It doesn't dominantly have a say in the improvement of their exercises and explicit game abilities. The brilliant players are improving themselves competitors, which thus improve the performance. The best performance realize their own keep up with the particular game abilities, by investing their energy and the loads and dominating the abilities of execution may have best performance the particular game abilities. There has clearly been a change in needs of these more predominant players. The mix different wellness parts to accomplish ideal execution. These incorporate football, hockey, netball, ball and numerous others. As a competitor associated with such a game, one are probably not going to have the advantage of preparing any of these parts in seclusion throughout some stretch of time, and one's moulding programs most likely include the simultaneous preparing of a few wellness parts across various miniature cycles.

METHODOLOGY

**Autora de correspondencia / Corresponding author.*

EFFECT OF AEROBIC TRAINING, RESISTANCE TRAINING AND CONCURRENT TRAINING ON SELECTED BIOMOTOR ABILITIES

To accomplish the motivation behind this review, 60 male subjects were chosen aimlessly from TNPESU- Chennai, TamilNadu, India. The age of the members went somewhere in the range of eighteen and twenty five old. The chose members were separated into three, test gatherings and a benchmark group with fifteen members (n=15) in each gathering. Group-I (ATG=15) went through high-impact preparing, Group II RTG=15 went through opposition preparing, Group III (CTG=15) went through simultaneous acquiring and Group IV filled in as control bunch (CG=15). Every one of the trial bunches went through 12 weeks of preparing, 3 meetings each week. Every one of the subjects were tried on chosen factors before and following the preparation time frame. The reliant factors in particular unstable strength and strength perseverance were evaluated by directing Sargent bounce board test and YMCA brief bowed knee sit-ups.

ANALYSIS OF DATA

The information gathered from every one of the four gatherings were genuinely examined with (ANCOVA) as four gatherings were involved. At whatever point the 'F' proportion was observed to be critical, Scheffe's test was utilized as post hoc test to figure out which of the combined means contrasted essentially. In all cases the standard for factual importance was set at 0.05 degree of certainty (P<0.05).

Table - I

Analysis of Covariance on Explosive Strength and Strength Endurance of Aerobic Resistance Concurrent Training and Control Groups

Variables	Tests/ groups	ATG	RTG	CTG	CG	SV	SS	df	MS	F
Explosive strength	Pre Test Mean \pm SD	0.42 \pm 0.05	0.41 \pm 0.05	0.44 \pm 0.09	0.37 \pm 0.05	B W	0.042 0.236	3 56	0.0014 0.0042	3.327*
	Post Test Mean \pm SD	0.46 \pm 0.04	0.46 \pm 0.04	0.53 \pm 0.07	0.38 \pm 0.04	B W	0.160 0.145	3 56	0.0053 0.003	20.575*
	Adjusted Post - Test Mean	0.453	0.459	0.518	0.399	B	0.091	3	0.03	14.801*
Strength Endurance	Pre Test Mean \pm SD	43 \pm 4.78	40.87 \pm 4.47	46.33 \pm 8.56	39.13 \pm 5.59	B W	432.533 2062.8	3 56	144.178 36.836	3.914*
	Post Test Mean \pm SD	47.66 \pm 4.53	46.4 \pm 3.66	54.47 \pm 6.22	40.27 \pm 4.89	B W	1526 1351.6	3 56	508.667 24.136	21.075*
	Adjusted Post - Test Mean	47.397	46.994	52.846	41.563	B W	803.924 1012.845	3 55	267.975 18.415	14.552*

(The table value required for 0.05 level of significance with f 3, 56 and 3,55 are 2.76 and 2.78 respectively)

DISCUSSIONS

The acquired f-proportion esteems were higher than the table worth 2.76 with df 3 and 55 needed for

importance at 0.05 level. It demonstrates that there were huge contrasts among the changed posttest method for oxygen consuming, opposition and simultaneous preparing groups on explosive strength and strength endurance.

Table — II
Scheffe's Test for Differences of the Adjusted
Post-test Paired Means of Explosive Strength and Strength Endurance

Variables	Adjusted Post-test means				MD	CI
	ATG	RTG	CTG	CG		
Explosive Strength	0.453	0.459			0.006	0.047
	0.453		0.518		0.065*	
	0.453			0.399	0.054*	
		0.459	0.518		0.059*	
		0.459		0.399	0.049*	
			0.518	0.399	0.119*	
Strength Endurance	47.397	46.994			0.403	4.53
	47.397		52.846		5.449*	
	47.397			41.563	5.834*	
		46.994	52.846		5.852*	
		46.994		41.563	5.431*	
			52.846	41.563	11.283*	

* Significant at 0.05 level.

DISCUSSIONS

The examination of the information infers that there is no huge contrast on explosive strength and strength endurance among ATG and RTG. In any case, simultaneous preparing is observed to be preferred in expanding hazardous strength over ATG and RTG.

CONCLUSIONS

1. Aerobic, resistance and concurrent training methods helped to improve explosive strength and muscular endurance. The concurrent training has increased explosive strength and muscular endurance performance significantly when compared to the aerobic and resistance training systems. There is no significant difference between the aerobic and resistance training systems in the development of explosive strength and muscular endurance performance.
2. Concurrent training is a suitable training system to attain the optimum level of bio-motor performance.

ACKNOWLEDGEMENT

Conflict of Interest: Nil

Ethical Clearance: Nil

Source of Funding: Self

References:

- [1] Baechle TR and Earle RW., Essentials of Strength Training and Conditioning, 2000, 2nd Edition, Champaign Illinois: Human Kinetics Publishers Inc.
- [2] Baechle, Thomas R. and Groves, Barney R., (1992), Weight Training Step ton Success, Champaign Illinois: Human Kinetics Publishers Inc.
- [3] Baker, D. "The Effects of an In-Season of Concurrent Training on the Maintenance of Maximal Strength and Power in Professional and College-Aged Rugby League Football Players", *Journal of Strength and Conditioning Research*, 15(2),172-7.
- [4] Batista, M., Tricoli, V. ,& Ugrinowitsch, C. (2006), "The Influence of Strength Training Experience on Explosive Strength Potentiation", *Medicine and Science in Sports and Exercise*, 38(5), Supplement abstract 1833.
- [5] Gabbett TJ., (2002), "Physiological Characteristics of Junior and Senior Rugby League Players", *Br J Sports Med*, 36(5),334-9.
- [6] Gergley JC., (2009), "Comparison of Two Lower-Body Modes of Endurance Training on Lower-Body Strength Development While Concurrently Training", *Journal of Strength and Conditioning Research*, 23(3),979-87.
- [7] Wong, P.L., et al., (2010), "Effect of Preseason Concurrent Muscular Strength and High-Intensity Interval Training in Professional Soccer Players", *Journal of Strength and Conditioning Research*, 24(3),653-60.
- [8] Prasanna TA, Vaithianathan K. The Combined Effect of Continuous Run, Alternate Pace Run and Fartlek Training on Selected Physiological Variable among Male Athletes. EXECUTIVE EDITOR. 2019 Mar;10(3):246.
- [9] Saran KS, Vaithianathan K, Anand M, Prasanna TA. Isolated and Combined Effect of Plyometric and Weight Training on Selected Physical Fitness and Hematological Variables of Football Players. SCOPUS IJPHRD CITATION SCORE. 2019 Jul;10(7):362.